Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Exploring Deepfakes

You're reading from   Exploring Deepfakes Deploy powerful AI techniques for face replacement and more with this comprehensive guide

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781801810692
Length 192 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Matt Tora Matt Tora
Author Profile Icon Matt Tora
Matt Tora
Bryan Lyon Bryan Lyon
Author Profile Icon Bryan Lyon
Bryan Lyon
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Part 1: Understanding Deepfakes
2. Chapter 1: Surveying Deepfakes FREE CHAPTER 3. Chapter 2: Examining Deepfake Ethics and Dangers 4. Chapter 3: Acquiring and Processing Data 5. Chapter 4: The Deepfake Workflow 6. Part 2: Getting Hands-On with the Deepfake Process
7. Chapter 5: Extracting Faces 8. Chapter 6: Training a Deepfake Model 9. Chapter 7: Swapping the Face Back into the Video 10. Part 3: Where to Now?
11. Chapter 8: Applying the Lessons of Deepfakes 12. Chapter 9: The Future of Generative AI 13. Index 14. Other Books You May Enjoy

Understanding convolutional layers

In this chapter, we’ll finally get into the meat of the neural networks behind deepfakes. A big part of how networks such as these work is a technique called convolutional layers. These layers are extremely important in effectively working with image data and form an important cornerstone of most neural networks.

A convolution is an operation that changes the shape of an object. In the case of neural networks, we use convolutional layers, which iterate a convolution over a matrix and create a new (generally smaller) output matrix. Convolutions are a way to reduce an image in size while simultaneously searching for patterns. The more convolutional layers you stack, the more complicated the patterns that can be encoded from the original image.

Figure 6.1 – An example of a convolution downscaling a full image

Figure 6.1 – An example of a convolution downscaling a full image

There are several details that define a convolutional layer. The first is dimensionality. In our...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image