Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks and build intelligent systems with Python

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning 2. A First Look at TensorFlow FREE CHAPTER 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Other Books You May Enjoy Index

Deep Q-learning


Thanks to the recent achievements of Google DeepMind in 2013 and 2016, which succeeded at reaching so-called superhuman levels in Atari games and beat the world champion Go, RL has become very interesting in of the machine learning community. This renewed interest is also due to the advent of Deep Neural Networks (DNNs) as approximation functions, bringing the potential value of this type of algorithm to an even higher level. The algorithm that has gained the most interest in recent times is definitely Deep Q-Learning. The following section introduces the Deep Q-Learning algorithm and also discusses some optimization techniques to maximize its performance.

Deep Q neural networks

The Q-learning base algorithm can cause tremendous problems when the number of states and possible actions increases and becomes unmanageable from a matrix point of view. Just think of the input configuration in the case of the structure used by Google to achieve the level of performance in the Atari...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image