Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks with Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786469786
Length 320 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Fabrizio Milo Fabrizio Milo
Author Profile Icon Fabrizio Milo
Fabrizio Milo
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. First Look at TensorFlow 3. Using TensorFlow on a Feed-Forward Neural Network 4. TensorFlow on a Convolutional Neural Network 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. GPU Computing 8. Advanced TensorFlow Programming 9. Advanced Multimedia Programming with TensorFlow 10. Reinforcement Learning

What is deep learning?

Deep learning is a machine learning research area that is based on a particular type of learning mechanism. It is characterized by the effort to create a learning model at several levels, in which the most profound levels take as input the outputs of previous levels, transforming them and always abstracting more. This insight on the levels of learning is inspired by the way the brain processes information and learns, responding to external stimuli.

Each learning level corresponds, hypothetically, to one of the different areas which make up the cerebral cortex.

How the human brain works

The visual cortex, which is intended to solve image recognition problems, shows a sequence of sectors placed in a hierarchy. Each of these areas receives an input representation, by means of flow signals that connect it to other sectors.

Each level of this hierarchy represents a different level of abstraction, with the most abstract features defined in terms of those of the lower level. At a time when the brain receives an input image, the processing goes through various phases, for example, detection of the edges or the perception of forms (from those primitive to those gradually more and more complex).

As the brain learns by trial and activates new neurons by learning from the experience, even in deep learning architectures, the extraction stages or layers are changed based on the information received at the input.

The scheme, on the next page shows what has been said in the case of an image classification system, each block gradually extracts the features of the input image, going on to process data already preprocessed from the previous blocks, extracting features of the image that are increasingly abstract, and thus building the hierarchical representation of data that comes with on deep learning based system.

More precisely, it builds the layers as follows along with the figure representation:

  • Layer 1: The system starts identifying the dark and light pixels
  • Layer 2: The system identifies edges and shapes
  • Layer 3: The system learns more complex shapes and objects
  • Layer 4: The system learns which objects define a human face

Here is the visual representation of the process:

Figure 2: A deep learning system at work on a facial classification problem

Deep learning history

The development of deep learning consequently occurred parallel to the study of artificial intelligence, and especially neural networks. After beginning in the 50 s, it is mainly in the 80s that this area grew, thanks to Geoff Hinton and machine learning specialists who collaborated with him. In those years, computer technology was not sufficiently advanced to allow a real improvement in this direction, so we had to wait until the present day to see, thanks to the availability of data and the computing power, even more significant developments.

Problems addressed

As for the areas of application, deep learning is employed in the development of speech recognition systems, in the search patterns, and especially, in the image recognition, thanks to its learning characteristics for levels, which enable it to focus, step by step, on the various areas of an image to be processed and classified.

You have been reading a chapter from
Deep Learning with TensorFlow
Published in: Apr 2017
Publisher: Packt
ISBN-13: 9781786469786
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image