Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks with Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786469786
Length 320 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Fabrizio Milo Fabrizio Milo
Author Profile Icon Fabrizio Milo
Fabrizio Milo
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Deep Learning 2. First Look at TensorFlow FREE CHAPTER 3. Using TensorFlow on a Feed-Forward Neural Network 4. TensorFlow on a Convolutional Neural Network 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. GPU Computing 8. Advanced TensorFlow Programming 9. Advanced Multimedia Programming with TensorFlow 10. Reinforcement Learning

Computational graphs

When performing an operation, for example training a neural network, or the sum of two integers, TensorFlow internally represent, its computation using a data flow graph (or computational graph).

This is a directed graph consisting of the following:

  • A set of nodes, each one representing an operation
  • A set of directed arcs, each one representing the data on which the operations are performed

TensorFlow has two types of edge:

  • Normal: They are only carriers of data structures, between the nodes. The output of one operation (from one node) becomes the input for another operation. The edge connecting two nodes carry the values.
  • Special: This edge doesn't carry values. It represents a control dependency between two nodes A and B. It means that the node B will be executed only if the operation in A will be ended before the relationship between operations on the data.

The TensorFlow implementation...

You have been reading a chapter from
Deep Learning with TensorFlow
Published in: Apr 2017
Publisher: Packt
ISBN-13: 9781786469786
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime