Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Lakehouse in Action

You're reading from   Data Lakehouse in Action Architecting a modern and scalable data analytics platform

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781801815932
Length 206 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Pradeep Menon Pradeep Menon
Author Profile Icon Pradeep Menon
Pradeep Menon
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. PART 1: Architectural Patterns for Analytics
2. Chapter 1: Introducing the Evolution of Data Analytics Patterns FREE CHAPTER 3. Chapter 2: The Data Lakehouse Architecture Overview 4. PART 2: Data Lakehouse Component Deep Dive
5. Chapter 3: Ingesting and Processing Data in a Data Lakehouse 6. Chapter 4: Storing and Serving Data in a Data Lakehouse 7. Chapter 5: Deriving Insights from a Data Lakehouse 8. Chapter 6: Applying Data Governance in the Data Lakehouse 9. Chapter 7: Applying Data Security in a Data Lakehouse 10. PART 3: Implementing and Governing a Data Lakehouse
11. Chapter 8: Implementing a Data Lakehouse on Microsoft Azure 12. Chapter 9: Scaling the Data Lakehouse Architecture 13. Other Books You May Enjoy

Summary

This chapter covered data ingestion and processing. We started by exploring the different patterns for batch data ingestion: ETL and ELT.

Then, we delved into the different components of the ELTL pattern, which is used to ingest and process batch data in a data lakehouse. Then, we discussed how to push or pull data into a raw data store. Finally, we discussed the pivotal role that the raw data store layer plays in data ingestion and processing.

Next, we delved into distributed computing and how it is used for processing batch data at scale.

After discussing batch data ingestion and processing, we discussed patterns for ingesting and processing stream data. Then, we discussed how to ingest stream data by publishing it to a topic and subscribing to it for processing. Finally, we learned how to micro batch the streams and exercise actions on a micro batch or a specific event of interest.

Finally, we brought all the concepts we'd discussed together and weaved...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime