Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with dbt

You're reading from   Data Engineering with dbt A practical guide to building a cloud-based, pragmatic, and dependable data platform with SQL

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781803246284
Length 578 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Roberto Zagni Roberto Zagni
Author Profile Icon Roberto Zagni
Roberto Zagni
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: The Foundations of Data Engineering
2. Chapter 1: The Basics of SQL to Transform Data FREE CHAPTER 3. Chapter 2: Setting Up Your dbt Cloud Development Environment 4. Chapter 3: Data Modeling for Data Engineering 5. Chapter 4: Analytics Engineering as the New Core of Data Engineering 6. Chapter 5: Transforming Data with dbt 7. Part 2: Agile Data Engineering with dbt
8. Chapter 6: Writing Maintainable Code 9. Chapter 7: Working with Dimensional Data 10. Chapter 8: Delivering Consistency in Your Data 11. Chapter 9: Delivering Reliability in Your Data 12. Chapter 10: Agile Development 13. Chapter 11: Team Collaboration 14. Part 3: Hands-On Best Practices for Simple, Future-Proof Data Platforms
15. Chapter 12: Deployment, Execution, and Documentation Automation 16. Chapter 13: Moving Beyond the Basics 17. Chapter 14: Enhancing Software Quality 18. Chapter 15: Patterns for Frequent Use Cases 19. Index 20. Other Books You May Enjoy

Ingestion patterns

Ingesting data into the platform is still one of the key aspects of building any data platform – without data, there is no data platform.

It is a topic with a big range of possibilities as ingesting data depends on the data platform, the storage service, the file format, and many more big and small details.

In this chapter, we will concentrate on Snowflake, where it is possible to load data in multiple ways. However, the most efficient way to ingest decent amounts of data is through files. The concepts that we described for Snowflake apply, with some adaptations, to other platforms.

As an example, it is possible to use SQL insert statements, but the throughput is orders of magnitude lower than file-based ingestion or reading data from external tables (that, under the hood, read from files), but that also has its drawbacks, as we will see in a second.

In this section, we will present some of the most common use cases for ingesting data into Snowflake...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime