Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence for IoT Cookbook

You're reading from   Artificial Intelligence for IoT Cookbook Over 70 recipes for building AI solutions for smart homes, industrial IoT, and smart cities

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781838981983
Length 260 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Roshak Michael Roshak
Author Profile Icon Michael Roshak
Michael Roshak
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Setting Up the IoT and AI Environment 2. Handling Data FREE CHAPTER 3. Machine Learning for IoT 4. Deep Learning for Predictive Maintenance 5. Anomaly Detection 6. Computer Vision 7. NLP and Bots for Self-Ordering Kiosks 8. Optimizing with Microcontrollers and Pipelines 9. Deploying to the Edge 10. About Packt

Optimizing hyperparameters

There are many different ways of tuning hyperparameters. If we were to do this manually, we could put random variables into our parameters and see which one was the best. To do this, we could perform a grid-wise approach, where we map the possible options and put in some random tries and keep going down a route that seems to produce the best outcomes. We might use statistics or machine learning to help us determine what parameters can give us the best results. These different approaches have pros and cons, depending on the shape of the loss of the experiment. 

There are various machine learning libraries that can help us perform these types of common tasks easier. sklearn, for example, has a RandomizedSearchCV method that, given a set of parameters, will perform a search for the best model with the least loss. In this recipe, we will expand on the Classifying chemical sensors with decision trees recipe from Chapter 3, Machine Learning for IoT, and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image