Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Intelligence for IoT Cookbook

You're reading from   Artificial Intelligence for IoT Cookbook Over 70 recipes for building AI solutions for smart homes, industrial IoT, and smart cities

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781838981983
Length 260 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Roshak Michael Roshak
Author Profile Icon Michael Roshak
Michael Roshak
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Setting Up the IoT and AI Environment 2. Handling Data FREE CHAPTER 3. Machine Learning for IoT 4. Deep Learning for Predictive Maintenance 5. Anomaly Detection 6. Computer Vision 7. NLP and Bots for Self-Ordering Kiosks 8. Optimizing with Microcontrollers and Pipelines 9. Deploying to the Edge 10. About Packt

Variance

Variance is the measure of how much the data varies from the mean. In the code that follows, we are using Koalas, a distributed clone of pandas, to do our basic data engineering tasks, such as determining variance. The following code uses standard deviation over a rolling window to show data spike issues:

import databricks.koalas as ks 

df = ks.DataFrame(pump_data)
print("variance: " + str(df.var()))
minuite['time'] = pd.to_datetime(minuite['time'])
minuite.set_index('time')
minuite['sample'] = minuite['sample'].rolling(window=600,center=False).std()
Duty cycles are used on IoT product lines before enough data is collected for machine learning. They are often simple measures, such as whether the device is too hot or there are too many vibrations.

We can also look at high and low values such as maximum to show whether the sensor is throwing out appropriate readings. The following code shows the maximum reading of our dataset:

max = DF.agg({"averageRating": "max"}).collect()[0]
You have been reading a chapter from
Artificial Intelligence for IoT Cookbook
Published in: Mar 2021
Publisher: Packt
ISBN-13: 9781838981983
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image