In the previous chapter, we established the fundamental theory of artificial neural networks (ANNs) and how they emulate human brain structure for generating output based on a set of inputs with the help of interconnected nodes. The nodes are arranged in three types of layers: input, hidden, and output. We understood the basic and mathematical concepts of how the input signal is carried through to the output layer and the iterative approach that ANNs take for training weights on neuron connections. Simple neural networks with one or two hidden layers can solve very rudimentary problems. However, in order to meaningfully utilize ANNs for real-world problems, which involve hundreds or thousands of input variables, involve more complex models, and require the models to store more information, we need more complex structures that are realized with large numbers...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine