Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Apache Solr Search Patterns

You're reading from   Apache Solr Search Patterns Leverage the power of Apache Solr to power up your business by navigating your users to their data quickly and efficiently

Arrow left icon
Product type Paperback
Published in Apr 2015
Publisher
ISBN-13 9781783981847
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jayant Kumar Jayant Kumar
Author Profile Icon Jayant Kumar
Jayant Kumar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Solr Indexing Internals FREE CHAPTER 2. Customizing the Solr Scoring Algorithm 3. Solr Internals and Custom Queries 4. Solr for Big Data 5. Solr in E-commerce 6. Solr for Spatial Search 7. Using Solr in an Advertising System 8. AJAX Solr 9. SolrCloud 10. Text Tagging with Lucene FST Index

Drawbacks of the TF-IDF model

Suppose, on an e-commerce website, a customer is searching for a jacket and intends to purchase a jacket with a unique design. The keyword entered is unique jacket. What happens at the Solr end?

http://solr.server/solr/clothes/?q=unique+jacket

Now, unique is a comparatively rare keyword. There would be fewer items or documents that mention unique in their description. Let us see how this affects the ranking of our results via the TF-IDF scoring algorithm. A relook at the scoring algorithm with respect to this query is shown in the following diagram:

Drawbacks of the TF-IDF model

A relook at the TF-IDF scoring algorithm

The following parameters in the scoring formula do not affect the ranking of the documents in the query result:

  • coord(q,d): This would be constant for a MUST query. Herein we are searching for both unique and jacket, so all documents will have both the keywords and the coord(q,d) value will be the same for all documents.
  • queryNorm(q): This is used to make the scores from different...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image