Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Apache Hadoop 3 Quick Start Guide

You're reading from   Apache Hadoop 3 Quick Start Guide Learn about big data processing and analytics

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788999830
Length 220 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Hrishikesh Vijay Karambelkar Hrishikesh Vijay Karambelkar
Author Profile Icon Hrishikesh Vijay Karambelkar
Hrishikesh Vijay Karambelkar
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Hadoop 3.0 - Background and Introduction FREE CHAPTER 2. Planning and Setting Up Hadoop Clusters 3. Deep Dive into the Hadoop Distributed File System 4. Developing MapReduce Applications 5. Building Rich YARN Applications 6. Monitoring and Administration of a Hadoop Cluster 7. Demystifying Hadoop Ecosystem Components 8. Advanced Topics in Apache Hadoop 9. Other Books You May Enjoy

Building Rich YARN Applications

"Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live."
– Martin Golding

YARN or (Yet Another Resource Negotiator) was introduced in Hadoop version 2 to open distributed programming for all of the problems that may not necessarily be addressed using the MapReduce programming technique. Let's look at the key reasons behind introducing YARN in Hadoop:

  • The older Hadoop used Job Tracker to coordinate running jobs whereas Task Tracker was used to run assigned jobs. This eventually became a bottleneck due to a single Job Tracker when working with a high number of Hadoop nodes.
  • With traditional MapReduce, the nodes were assigned fixed numbers of Map and Reduce slots. Due to this nature, the utilization of the cluster resources was not optimal due to inflexibility between...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image