Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
3D Deep Learning with Python

You're reading from   3D Deep Learning with Python Design and develop your computer vision model with 3D data using PyTorch3D and more

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803247823
Length 236 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Xudong Ma Xudong Ma
Author Profile Icon Xudong Ma
Xudong Ma
Vishakh Hegde Vishakh Hegde
Author Profile Icon Vishakh Hegde
Vishakh Hegde
Lilit Yolyan Lilit Yolyan
Author Profile Icon Lilit Yolyan
Lilit Yolyan
David Farrugia David Farrugia
Author Profile Icon David Farrugia
David Farrugia
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. PART 1: 3D Data Processing Basics
2. Chapter 1: Introducing 3D Data Processing FREE CHAPTER 3. Chapter 2: Introducing 3D Computer Vision and Geometry 4. PART 2: 3D Deep Learning Using PyTorch3D
5. Chapter 3: Fitting Deformable Mesh Models to Raw Point Clouds 6. Chapter 4: Learning Object Pose Detection and Tracking by Differentiable Rendering 7. Chapter 5: Understanding Differentiable Volumetric Rendering 8. Chapter 6: Exploring Neural Radiance Fields (NeRF) 9. PART 3: State-of-the-art 3D Deep Learning Using PyTorch3D
10. Chapter 7: Exploring Controllable Neural Feature Fields 11. Chapter 8: Modeling the Human Body in 3D 12. Chapter 9: Performing End-to-End View Synthesis with SynSin 13. Chapter 10: Mesh R-CNN 14. Index 15. Other Books You May Enjoy

Introducing 3D Data Processing

In this chapter, we are going to discuss some basic concepts that are very fundamental to 3D deep learning and that will be used frequently in later chapters. We will begin by learning about the most frequently used 3D data formats, as well as the many ways that we are going to manipulate them and convert them to different formats. We will start by setting up our development environment and installing all the necessary software packages, including Anaconda, Python, PyTorch, and PyTorch3D. We will then talk about the most frequently used ways to represent 3D data – for example, point clouds, meshes, and voxels. We will then move on to the 3D data file formats, such as PLY and OBJ files. We will then discuss 3D coordination systems. Finally, we will discuss camera models, which are mostly related to how 3D data is mapped to 2D images.

After reading this chapter, you will be able to debug 3D deep learning algorithms easily by inspecting output data files. With a solid understanding of coordination systems and camera models, you will be ready to build on that knowledge and learn about more advanced 3D deep learning topics.

In this chapter, we’re going to cover the following main topics:

  • Setting up a development environment and installing Anaconda, PyTorch, and PyTorch3D
  • 3D data representation
  • 3D data formats – PLY and OBJ files
  • 3D coordination systems and conversion between them
  • Camera models – perspective and orthographic cameras
You have been reading a chapter from
3D Deep Learning with Python
Published in: Oct 2022
Publisher: Packt
ISBN-13: 9781803247823
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image