Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon

Expert Product Reviews - LLM

1 Articles
article-image-comprehensive-review-of-the-ai-value-playbook-by-tanmay-gaur
Tanmay Gaur
13 Nov 2024
5 min read
Save for later

Comprehensive Review of 'The AI Value Playbook' by Tanmay Gaur

Tanmay Gaur
13 Nov 2024
5 min read
We are pleased to share a comprehensive review of "The AI Value Playbook", published by Packt, and written by the reviewer Tanmay Gaur. This review offers an in-depth exploration of the book's key themes and insights, providing readers with a thorough understanding of its value.Please find the review below:As someone who has had the privilege of working closely on this book, I can confidently say that it is an invaluable resource for both newcomers to AI and seasoned professionals. The book offers a wealth of knowledge through interviews and case studies with industry experts, detailing their approaches to overcoming implementation challenges. Artificial intelligence (AI) stands as a disruptive and transformative force, reshaping how enterprises interact with customers and helping them streamline their operations. Embracing this technological revolution, most companies are now pivoting towards innovative AI-driven solutions that create new value streams for these organizations. For those early in their AI journey, this book provides a clear understanding of various AI use-cases applicable to enterprises and offers practical guidance on how to approach them. It serves as a foundational text that helps readers grasp the complexities and opportunities within the AI landscape.  For AI professionals further along in their careers, the book identifies key traits that contribute to successful AI implementations. Drawing from my personal experience with multiple AI initiatives, I found that the book affirmed my insights on what differentiates a successful project from a failure. It offers a nuanced perspective that is both enlightening and practical.  As the MTS for customer care at T-Mobile, I have  led multiple AI initiatives. One of the first initiatives was a recommendation engine based pilot in customer care, a form of predictive care we called Next Best Action. The case studies provided mirrored some of the challenges that we had to overcome in making that initiative successful.  I will cite a few examples below. A major challenge was the dispersed nature of data across various enterprise systems. Predicting the data needs for the solution and ensuring that all necessary data are sanitized and available in near real-time for model training and execution were critical hurdles. Another significant challenge was ensuring compliance with multiple data privacy laws. Additionally, establishing control groups to validate the solution’s results quickly and in iterations is a complex task. As an example, in customer care, the creation of control and treatment groups that are similar in all aspects to minimize the impact of external confounding variables required more effort than initially anticipated. A frequently overlooked challenge in AI implementations of recommendation engines turns out to be the actual presentation of dynamic AI/ML-driven insights to consumers of the data in a meaningful way, be it customer service agents or end customers. There are challenges both in the integration of these dynamic insights into the experiences as well as getting enough adoption to be successful. What I learned from iterations of experiments and at times failures, this book encapsulates that  knowledge in a succinct and easy-to-process package and thus provides a really unique value proposition. I highly recommend this book to anyone involved in the field of AI, whether you are just starting out or have years of experience. It is a comprehensive guide that will undoubtedly enhance your understanding and execution of AI projects. Reviewer BioTanmaya Gaur is a Principal Architect at T-Mobile US, Inc., with over 15 years of experience building enterprise systems. He is a technical expert in the architecture, development, and deployment of advanced software and infrastructure for enhanced user support in telecom applications. He is passionate about utilizing composable architecture strategies to aid the creation and management of reusable components across the entire spectrum of web development, from front-end UX to backend coordination and content management. His current focus is building Telecom CRM tools that leverage micro-front-end, artificial intelligence, and machine learning algorithms to boost efficiency and improve the product experience.
Read more
  • 0
  • 0
  • 1473
Banner background image
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime