Given the range of models we are discussing in this book, is there a need to discuss Markov models? When we speak about forecasting, one of the main inputs is the historical information. This could be in the form of a time series. However, Markov models don't need historical information to be able to forecast. When we build a Markov model, we are interested in the state (value/behavior/phenomenon) of a subject at the present time. We are also interested in the states that the subject can get transitioned to and the transition probabilities involved. A textbook definition of the Markov model would be a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. To understand the terms better, let's look at the states that a car being driven may...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine