Exploratory analysis techniques are one part of the larger process of collecting data, learning from data, acting on data, and exploring data to uncover a meaningful pattern. The Exploratory Data Analysis (EDA) is a crucial step to take before diving into advanced analytics and machine learning, as it provides the context needed to develop an appropriate model for the problem at hand and to correctly interpret its results through visualization techniques to tease apart hidden patterns. In this chapter, we will discuss some of EDA's most common and essential practices, in order to summarize and visualize data so that the task of finding trends and patterns becomes causally easier.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine