Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning (Wiley)

You're reading from   Python Machine Learning (Wiley) Python makes machine learning easy for beginners and experienced developers

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Wiley
ISBN-13 9781119545637
Length 320 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Wei-Meng Lee Wei-Meng Lee
Author Profile Icon Wei-Meng Lee
Wei-Meng Lee
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

1. Cover
2. Introduction FREE CHAPTER
3. CHAPTER 1: Introduction to Machine Learning 4. CHAPTER 2: Extending Python Using NumPy 5. CHAPTER 3: Manipulating Tabular Data Using Pandas 6. CHAPTER 4: Data Visualization Using matplotlib 7. CHAPTER 5: Getting Started with Scikit‐learn for Machine Learning 8. CHAPTER 6: Supervised Learning—Linear Regression 9. CHAPTER 7: Supervised Learning—Classification Using Logistic Regression 10. CHAPTER 8: Supervised Learning—Classification Using Support Vector Machines 11. CHAPTER 9: Supervised Learning—Classification Using K‐Nearest Neighbors (KNN) 12. CHAPTER 10: Unsupervised Learning—Clustering Using K‐Means 13. CHAPTER 11: Using Azure Machine Learning Studio 14. CHAPTER 12: Deploying Machine Learning Models 15. Index
16. End User License Agreement

Kernel Trick

Sometimes, the points in a dataset are not always linearly separable. Consider the points shown in Figure 8.11.

Illustration of a scatter plot depicting two groups of points in a dataset distributed in a circular fashion.

Figure 8.11: A scatter plot of two groups of points distributed in circular fashion

You can see that it is not possible to draw a straight line to separate the two sets of points. With some manipulation, however, you can make this set of points linearly separable. This technique is known as the kernel trick. The kernel trick is a technique in machine learning that transforms data into a higher dimension space so that, after the transformation, it has a clear dividing margin between classes of data.

Adding a Third Dimension

To do so, we can add a third dimension, say the z‐axis, and define z to be:

equation z = x 2 + y 2 --

Once we plot the points using a 3D chart, the points are now linearly separable. It is difficult to visualize this unless you plot the points out. The following code snippet does just that:

%matplotlib inline
 
from mpl_toolkits.mplot3d...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image