Recognizing Faces with Support Vector Machine
In the previous chapter, we built a movie recommendation system with Naïve Bayes. This chapter continues our journey of supervised learning and classification. Specifically, we will be focusing on multiclass classification and support vector machine (SVM) classifiers. SVM is one of the most popular algorithms when it comes to high-dimensional spaces. The goal of the algorithm is to find a decision boundary in order to separate data from different classes. We will be discussing in detail how that works. Also, we will be implementing the algorithm with scikit-learn, and applying it to solve various real-life problems, including our main project of face recognition, along with fetal state categorization in cardiotocography and breast cancer prediction. A dimensionality reduction technique called principal component analysis, which boosts the performance of the image classifier, will also be covered in the chapter.
This...