Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Image Processing Cookbook

You're reading from   Python Image Processing Cookbook Over 60 recipes to help you perform complex image processing and computer vision tasks with ease

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781789537147
Length 438 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sandipan Dey Sandipan Dey
Author Profile Icon Sandipan Dey
Sandipan Dey
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Image Manipulation and Transformation 2. Image Enhancement FREE CHAPTER 3. Image Restoration 4. Binary Image Processing 5. Image Registration 6. Image Segmentation 7. Image Classification 8. Object Detection in Images 9. Face Recognition, Image Captioning, and More 10. Other Books You May Enjoy

Robust matching and homography with the RANSAC algorithm

Random Sample Consensus (RANSAC) is an iterative non-deterministic algorithm for the robust estimation of parameters of a mathematical model from several random subsets of inliers from the complete dataset (containing outliers). In this recipe, we will use the skimage.measure module's implementation of the RANSAC algorithm. Each iteration of the RANSAC algorithm does the following:

  1. It selects a random sample of a size of min_samples from the original data (hypothetical inliers) and ensures that the sample dataset is valid for fitting the model.

  2. It fits a model (that is, estimate the model parameters) to the sampled dataset and ensures that the estimated model is valid.

  3. It checks whether the estimated model fits to all of the other data points. Computes the consensus set (inliers) and the outliers from all of the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image