Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Feature Engineering Cookbook

You're reading from   Python Feature Engineering Cookbook Over 70 recipes for creating, engineering, and transforming features to build machine learning models

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781789806311
Length 372 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Soledad Galli Soledad Galli
Author Profile Icon Soledad Galli
Soledad Galli
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Foreseeing Variable Problems When Building ML Models 2. Imputing Missing Data FREE CHAPTER 3. Encoding Categorical Variables 4. Transforming Numerical Variables 5. Performing Variable Discretization 6. Working with Outliers 7. Deriving Features from Dates and Time Variables 8. Performing Feature Scaling 9. Applying Mathematical Computations to Features 10. Creating Features with Transactional and Time Series Data 11. Extracting Features from Text Variables 12. Other Books You May Enjoy

Trimming outliers from the dataset

Trimming, or truncating, is the process of removing observations that show outliers in one or more variables in the dataset. There are three commonly used methods to set the boundaries beyond which a value can be considered an outlier. If the variable is normally distributed, the boundaries are given by the mean plus or minus three times the standard deviation, as approximately 99% of the data will be distributed between those limits. For normally, as well as not normally, distributed variables, we can determine the limits using the inter-quartile range proximity rules or by directly setting the limits to the 5th and 95th quantiles. We covered the formula for the inter-quartile range proximity rule in the Getting ready section of the Highlighting outliers recipe in Chapter 1, Foreseeing Variable Problems...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image