Naive Bayes
Bayes algorithm concept is quite old and exists from the 18th century. Thomas Bayes developed the foundational mathematical principles for determining the probability of unknown events from the known events. For example, if all apples are red in color and average diameter would be about 4 inches then, if at random one fruit is selected from the basket with red color and diameter of 3.7 inches, what is the probability that the particular fruit would be an apple? Naive term does assume independence of particular features in a class with respect to others. In this case, there would be no dependency between color and diameter. This independence assumption makes the Naive Bayes classifier most effective in terms of computational ease for particular tasks such as email classification based on words in which high dimensions of vocab do exist, even after assuming independence between features. Naive Bayes classifier performs surprisingly really well in practical applications.
Bayesian...