Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Microsoft Power BI Performance Best Practices

You're reading from   Microsoft Power BI Performance Best Practices A comprehensive guide to building consistently fast Power BI solutions

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801076449
Length 312 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Bhavik Merchant Bhavik Merchant
Author Profile Icon Bhavik Merchant
Bhavik Merchant
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Architecture, Bottlenecks, and Performance Targets
2. Chapter 1: Setting Targets and Identifying Problem Areas FREE CHAPTER 3. Chapter 2: Exploring Power BI Architecture and Configuration 4. Chapter 3: DirectQuery Optimization 5. Part 2: Performance Analysis, Improvement, and Management
6. Chapter 4: Analyzing Logs and Metrics 7. Chapter 5: Desktop Performance Analyzer 8. Chapter 6: Third-Party Utilities 9. Chapter 7: Governing with a Performance Framework 10. Part 3: Fetching, Transforming, and Visualizing Data
11. Chapter 8: Loading, Transforming, and Refreshing Data 12. Chapter 9: Report and Dashboard Design 13. Part 4: Data Models, Calculations, and Large Datasets
14. Chapter 10: Data Modeling and Row-Level Security 15. Chapter 11: Improving DAX 16. Chapter 12: High-Scale Patterns 17. Part 5: Optimizing Premium and Embedded Capacities
18. Chapter 13: Optimizing Premium and Embedded Capacities 19. Chapter 14: Embedding in Applications 20. Other Books You May Enjoy

Which choices affect performance?

While there are many aspects of each individual Power BI component that can be optimized for performance, the following list is a good summary that can serve as a checklist for every solution:

  • Inappropriate use of DirectQuery/Import: Decisions here balance model size and refresh time with data freshness and report interactivity.
  • Power Query design: Decisions here may fail to leverage the data source's native capabilities and therefore also fail to avoid additional work in the mashup engine.
  • Data modeling: Decisions here may make the data model unnecessarily large, waste memory, consume more computing resources, and affect usability.
  • Inefficient DAX calculations: Decisions here may fail to leverage the highly efficient internal VertiPaq Storage Engine and force operations in the Formula Engine.
  • Complex or inefficient row-level security: Decisions here may create intensive calculations to resolve which rows the user can see.
  • Poorly designed reports: Decisions here can put too much load on the user's device.
  • Data source or network latency: Decisions here may place the data far away from the user.

Now that you have learned about the high-level areas of a solution that we need to consider to fully optimize performance, let's summarize the key learnings from this chapter.

You have been reading a chapter from
Microsoft Power BI Performance Best Practices
Published in: Apr 2022
Publisher: Packt
ISBN-13: 9781801076449
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime