Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering spaCy

You're reading from   Mastering spaCy An end-to-end practical guide to implementing NLP applications using the Python ecosystem

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800563353
Length 356 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Duygu Altınok Duygu Altınok
Author Profile Icon Duygu Altınok
Duygu Altınok
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Getting Started with spaCy
2. Chapter 1: Getting Started with spaCy FREE CHAPTER 3. Chapter 2: Core Operations with spaCy 4. Section 2: spaCy Features
5. Chapter 3: Linguistic Features 6. Chapter 4: Rule-Based Matching 7. Chapter 5: Working with Word Vectors and Semantic Similarity 8. Chapter 6: Putting Everything Together: Semantic Parsing with spaCy 9. Section 3: Machine Learning with spaCy
10. Chapter 7: Customizing spaCy Models 11. Chapter 8: Text Classification with spaCy 12. Chapter 9: spaCy and Transformers 13. Chapter 10: Putting Everything Together: Designing Your Chatbot with spaCy 14. Other Books You May Enjoy

Using spaCy's pretrained vectors

We installed a medium-sized English spaCy language model in Chapter 1, Getting Started with spaCy, so that we can directly use word vectors. Word vectors are part of many spaCy language models. For instance, the en_core_web_md model ships with 300-dimensional vectors for 20,000 words, while the en_core_web_lg model ships with 300-dimensional vectors with a 685,000 word vocabulary.

Typically, small models (those whose names end with sm) do not include any word vectors but include context-sensitive tensors. You can still make the following semantic similarity calculations, but the results won't be as accurate as word vector computations.

You can reach a word's vector via the token.vector method. Let's look at this method in an example. The following code queries the word vector for banana:

import spacy
nlp = spacy.load("en_core_web_md")
doc = nlp("I ate a banana.")
doc[3].vector

The following screenshot...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime