Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Python for Finance

You're reading from   Mastering Python for Finance Understand, design, and implement state-of-the-art mathematical and statistical applications used in finance with Python

Arrow left icon
Product type Paperback
Published in Apr 2015
Publisher Packt
ISBN-13 9781784394516
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (12) Chapters Close

Preface 1. Python for Financial Applications FREE CHAPTER 2. The Importance of Linearity in Finance 3. Nonlinearity in Finance 4. Numerical Procedures 5. Interest Rates and Derivatives 6. Interactive Financial Analytics with Python and VSTOXX 7. Big Data with Python 8. Algorithmic Trading 9. Backtesting 10. Excel with Python Index

Discussion of algorithms in backtesting

After taking into consideration the designing of a backtesting model, one or more algorithms may be used to improve the model on a continuous basis. This section briefly covers some of the algorithmic techniques used in areas of backtesting, such as data mining and machine learning.

K-means clustering

The k-means clustering algorithm is a method of clustering analysis in data mining. From the backtest results of n observations, the k-means algorithm is designed to classify the data into k clusters based on their relative distance from each other. The center point of each cluster is computed. The objective then is to find the within-cluster sum of squares that gives us a model averaged point. The model averaged point indicates the likely average performance of the model, which can be used for further comparison with the performance of other models.

K-nearest neighbor machine learning algorithm

The k-nearest neighbor (KNN) is a lazy learning technique that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image