Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with the Elastic Stack

You're reading from   Machine Learning with the Elastic Stack Gain valuable insights from your data with Elastic Stack's machine learning features

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781801070034
Length 450 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Camilla Montonen Camilla Montonen
Author Profile Icon Camilla Montonen
Camilla Montonen
Rich Collier Rich Collier
Author Profile Icon Rich Collier
Rich Collier
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Getting Started with Machine Learning with Elastic Stack
2. Chapter 1: Machine Learning for IT FREE CHAPTER 3. Chapter 2: Enabling and Operationalization 4. Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
5. Chapter 3: Anomaly Detection 6. Chapter 4: Forecasting 7. Chapter 5: Interpreting Results 8. Chapter 6: Alerting on ML Analysis 9. Chapter 7: AIOps and Root Cause Analysis 10. Chapter 8: Anomaly Detection in Other Elastic Stack Apps 11. Section 3 – Data Frame Analysis
12. Chapter 9: Introducing Data Frame Analytics 13. Chapter 10: Outlier Detection 14. Chapter 11: Classification Analysis 15. Chapter 12: Regression 16. Chapter 13: Inference 17. Other Books You May Enjoy Appendix: Anomaly Detection Tips

Ignoring time periods

Often, people ask how they can get ML to ignore the fact that a certain event has occurred. Perhaps it was an expected maintenance window, or perhaps something was broken within the data ingest pipeline and data was lost for a few moments. There are a few ways that you can get ML to ignore time periods, and for distinction, we'll separate them into two groups:

  • A known, upcoming window of time
  • An unexpected window of time that is discovered only after the fact

To illustrate things, we'll use a single-metric count job (from Figure A.1) on the farequote dataset that has an anomaly on the date of February 9th:

Figure A.10 – An analysis on the farequote dataset with an anomaly we'd like to ignore

Now, let's explore the ways we can ignore the anomaly on February 9th using different situations.

Ignoring an upcoming (known) window of time

Two methods can be used to ignore an upcoming window of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime