Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with the Elastic Stack

You're reading from   Machine Learning with the Elastic Stack Gain valuable insights from your data with Elastic Stack's machine learning features

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781801070034
Length 450 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Camilla Montonen Camilla Montonen
Author Profile Icon Camilla Montonen
Camilla Montonen
Rich Collier Rich Collier
Author Profile Icon Rich Collier
Rich Collier
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Getting Started with Machine Learning with Elastic Stack
2. Chapter 1: Machine Learning for IT FREE CHAPTER 3. Chapter 2: Enabling and Operationalization 4. Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
5. Chapter 3: Anomaly Detection 6. Chapter 4: Forecasting 7. Chapter 5: Interpreting Results 8. Chapter 6: Alerting on ML Analysis 9. Chapter 7: AIOps and Root Cause Analysis 10. Chapter 8: Anomaly Detection in Other Elastic Stack Apps 11. Section 3 – Data Frame Analysis
12. Chapter 9: Introducing Data Frame Analytics 13. Chapter 10: Outlier Detection 14. Chapter 11: Classification Analysis 15. Chapter 12: Regression 16. Chapter 13: Inference 17. Other Books You May Enjoy Appendix: Anomaly Detection Tips

Understanding the importance and limitations of KPIs

Because of the problem of scale and the desire to make some amount of progress in making the collected data actionable, it is natural that some of the first metrics to be tackled for active inspection are those that are the best indicators of performance or operation. The KPIs that an IT organization chooses for measurement, tracking, and flagging can span diverse indicators, including the following:

  • Customer experience: These metrics measure customer experience, such as application response times or error rates.
  • Availability: Metrics such as uptime or Mean Time to Repair (MTTR) are often important to track.
  • Business: Here we may have metrics that directly measure business performance, such as orders per minute or number of active users.

As such, these types of metrics are usually displayed, front and center, on most high-level operational dashboards or on staff reports for employees ranging from technicians...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime