Until now, we have trained models on single instances, iterating an algorithm in order to minimize a target loss function. This approach is based on so-called strong learners, or methods that are optimized to solve a specific problem by looking for the best possible solution (highest accuracy). Another approach is based on a set of weak learners, which, formally, are estimators that are able to achieve an accuracy slightly higher than 0.5. In the real world, the actual estimators used in Ensemble Learning are much more accurate than their theoretical counterparts, but generally they are able to specialize a single region of the sample space and show bad performance while considering the whole dataset. Moreover, they can be trained in parallel or sequentially (with slight modifications to the parameters) and used as an ensemble (group) based on...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand