Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn Amazon SageMaker

You're reading from   Learn Amazon SageMaker A guide to building, training, and deploying machine learning models for developers and data scientists

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800208919
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Julien Simon Julien Simon
Author Profile Icon Julien Simon
Julien Simon
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Introduction to Amazon SageMaker
2. Chapter 1: Introduction to Amazon SageMaker FREE CHAPTER 3. Chapter 2: Handling Data Preparation Techniques 4. Section 2: Building and Training Models
5. Chapter 3: AutoML with Amazon SageMaker Autopilot 6. Chapter 4: Training Machine Learning Models 7. Chapter 5: Training Computer Vision Models 8. Chapter 6: Training Natural Language Processing Models 9. Chapter 7: Extending Machine Learning Services Using Built-In Frameworks 10. Chapter 8: Using Your Algorithms and Code 11. Section 3: Diving Deeper on Training
12. Chapter 9: Scaling Your Training Jobs 13. Chapter 10: Advanced Training Techniques 14. Section 4: Managing Models in Production
15. Chapter 11: Deploying Machine Learning Models 16. Chapter 12: Automating Machine Learning Workflows 17. Chapter 13: Optimizing Prediction Cost and Performance 18. Other Books You May Enjoy

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "You can use the describe-spot-price-history API to collect this information programmatically."

A block of code is set as follows:

od = sagemaker.estimator.Estimator(     container,     role,     train_instance_count=2,                                      train_instance_type='ml.p3.2xlarge',                                      train_use_spot_instances=True,     train_max_run=3600,                     # 1 hours      train_max_wait=7200,                    # 2 hour      output_path=s3_output)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

[<sagemaker.model_monitor.model_monitoring.MonitoringExecution at 0x7fdd1d55a6d8>,<sagemaker.model_monitor.model_monitoring.MonitoringExecution at 0x7fdd1d581630>,<sagemaker.model_monitor.model_monitoring.MonitoringExecution at 0x7fdce4b1c860>]

Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "We can find more information about our monitoring job in the SageMaker console, in the Processing jobs section."

Tips or important notes

Appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image