Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn Amazon SageMaker

You're reading from   Learn Amazon SageMaker A guide to building, training, and deploying machine learning models for developers and data scientists

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800208919
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Julien Simon Julien Simon
Author Profile Icon Julien Simon
Julien Simon
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Introduction to Amazon SageMaker
2. Chapter 1: Introduction to Amazon SageMaker FREE CHAPTER 3. Chapter 2: Handling Data Preparation Techniques 4. Section 2: Building and Training Models
5. Chapter 3: AutoML with Amazon SageMaker Autopilot 6. Chapter 4: Training Machine Learning Models 7. Chapter 5: Training Computer Vision Models 8. Chapter 6: Training Natural Language Processing Models 9. Chapter 7: Extending Machine Learning Services Using Built-In Frameworks 10. Chapter 8: Using Your Algorithms and Code 11. Section 3: Diving Deeper on Training
12. Chapter 9: Scaling Your Training Jobs 13. Chapter 10: Advanced Training Techniques 14. Section 4: Managing Models in Production
15. Chapter 11: Deploying Machine Learning Models 16. Chapter 12: Automating Machine Learning Workflows 17. Chapter 13: Optimizing Prediction Cost and Performance 18. Other Books You May Enjoy

Diving deep on SageMaker Autopilot

In this section, we're going to learn in detail how SageMaker Autopilot processes data and trains models. If this feels too advanced for now, you're welcome to skip this material. You can always revisit it later once you've gained more experience with the service.

First, let's look at the artifacts that SageMaker Autopilot produces.

The job artifacts

Listing our S3 bucket confirms the existence of many different artifacts:

$ aws s3 ls s3://sagemaker-us-east-2-123456789012/sagemaker/DEMO-autopilot/output/my-first-autopilot-job/

We can see many new prefixes. Let's figure out what's what:

PRE data-processor-models/PRE preprocessed-data/PRE sagemaker-automl-candidates/PRE transformed-data/PRE tuning/

The preprocessed-data/tuning_data prefix contains the training and validation splits generated from the input dataset. Each split is further broken into small CSV chunks:

  • The sagemaker-automl...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime