In this chapter, we have learned how to implement a dueling DQN in detail. We started off with the basic environment wrapper functions for preprocessing our game screens and then we defined the QNetworkDueling class. Here, we implemented a dueling Q Network, which splits the final fully connected layer of DQN into a value stream and an advantage stream and then combines these two streams to compute the q value. Following this, we saw how to create a replay buffer, which is used to store the experience and samples a minibatch of experience for training the network, and finally, we initialized our car racing environment using OpenAI's Gym and trained our agent. In the next chapter, Chapter 13, Recent Advancements and Next Steps, we will see some of the recent advancements in RL.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine