Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Image Processing with Python

You're reading from   Hands-On Image Processing with Python Expert techniques for advanced image analysis and effective interpretation of image data

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343731
Length 492 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sandipan Dey Sandipan Dey
Author Profile Icon Sandipan Dey
Sandipan Dey
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
1. Getting Started with Image Processing 2. Sampling, Fourier Transform, and Convolution FREE CHAPTER 3. Convolution and Frequency Domain Filtering 4. Image Enhancement 5. Image Enhancement Using Derivatives 6. Morphological Image Processing 7. Extracting Image Features and Descriptors 8. Image Segmentation 9. Classical Machine Learning Methods in Image Processing 10. Deep Learning in Image Processing - Image Classification 11. Deep Learning in Image Processing - Object Detection, and more 12. Additional Problems in Image Processing 1. Other Books You May Enjoy Index

Felzenszwalb, SLIC, QuickShift, and Compact Watershed algorithms 


In this section, we will discuss four popular low-level image segmentation methods and then compare the results obtained by those methods with an input image. The definition of good segmentation often depends on the application, and thus it is difficult to obtain a good segmentation. These methods are generally used for obtaining an over-segmentation, also known as superpixels. These superpixels then serve as a basis for more sophisticated algorithms such as merging with a region adjacency graph or conditional random fields.

Felzenszwalb's efficient graph-based image segmentation

Felzenszwalb's algorithm takes a graph-based approach to segmentation. It first constructs an undirected graph with the image pixels as vertices (the set to be segmented) and the weight of an edge between the two vertices being some measure of the dissimilarity (for example, the difference in intensity). In the graph-based approach, the problem of partitioning...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime