Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Effective .NET Memory Management

You're reading from   Effective .NET Memory Management Build memory-efficient cross-platform applications using .NET Core

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835461044
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Trevoir Williams Trevoir Williams
Author Profile Icon Trevoir Williams
Trevoir Williams
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Memory Management Fundamentals 2. Chapter 2: Object Lifetimes and Garbage Collection FREE CHAPTER 3. Chapter 3: Memory Allocation and Data Structures 4. Chapter 4: Memory Leaks and Resource Management 5. Chapter 5: Advanced Memory Management Techniques 6. Chapter 6: Memory Profiling and Optimization 7. Chapter 7: Low-Level Programming 8. Chapter 8: Performance Considerations and Best Practices 9. Chapter 9: Final Thoughts
10. Index 11. Other Books You May Enjoy

Summary

This chapter provided an in-depth look at various techniques and concepts for low-level programming, primarily involving authoring unsafe code and code that interacts with unmanaged code. It covered essential topics such as memory allocation, pointers, fixed statements, and interop mechanisms, including P/Invoke, COM Interop, Interop Marshaling, and the SafeHandle class.

We started by reviewing what managed and unmanaged memory are and how we can allocate memory that the GC does not manage. This becomes essential when we have operations that need to be as performant as possible, which means we want to reduce the performance overhead of having the GC involved in allocating and deallocating the memory. This consequently also means that we must be more vigilant when writing this code as we introduce the risk of memory leaks, among other risks. Mechanisms such as stackalloc and the Marshal class give us functions that support the allocation and clean-up operations. Still, the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image