Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow. - Second Edition

You're reading from  Deep Learning with TensorFlow. - Second Edition

Product type Book
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Pages 484 pages
Edition 2nd Edition
Languages
Authors (2):
Giancarlo Zaccone Giancarlo Zaccone
Profile icon Giancarlo Zaccone
Md. Rezaul Karim Md. Rezaul Karim
Profile icon Md. Rezaul Karim
View More author details
Toc

Table of Contents (15) Chapters close

Deep Learning with TensorFlow - Second Edition
Contributors
Preface
Other Books You May Enjoy
1. Getting Started with Deep Learning 2. A First Look at TensorFlow 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Index

Distributed computing


DL models have to be trained on a large amount of data to improve their performance. However, training a deep network with millions of parameters may take days, or even weeks. In Large Scale Distributed Deep Networks, Dean et al. proposed two paradigms, namely model parallelism and data parallelism, which allow us to train and serve a network model on multiple physical machines. In the following section, we introduce these paradigms with a focus on distributed TensorFlow capabilities.

Model parallelism

Model parallelism gives every processor the same data but applies a different model to it. If the network model is too big to fit into one machine's memory, different parts of the model can be assigned to different machines. A possible model parallelism approach is to have the first layer on a machine (node 1), the second layer on the second machine (node 2), and so on. Sometimes this is not the optimal approach, because the last layer has to wait for the first layer's...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime