Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Keras

You're reading from   Deep Learning with Keras Implementing deep learning models and neural networks with the power of Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787128422
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Neural Networks Foundations FREE CHAPTER 2. Keras Installation and API 3. Deep Learning with ConvNets 4. Generative Adversarial Networks and WaveNet 5. Word Embeddings 6. Recurrent Neural Network — RNN 7. Additional Deep Learning Models 8. AI Game Playing 9. Conclusion

Keras adversarial GANs for forging CIFAR

Now we can use a GAN approach to learn how to forge CIFAR-10 and create synthetic images that look real. Let's see the open source code (https://github.com/bstriner/keras-adversarial/blob/master/examples/example_gan_cifar10.py).  Again, note that it uses the syntax of Keras 1.x, but it also runs on the top of Keras 2.x thanks to a convenient set of utility functions contained in legacy.py (https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/legacy.py). First, the open source example imports a number of packages:

import matplotlib as mpl
# This line allows mpl to run with no DISPLAY defined
mpl.use('Agg')
import pandas as pd
import numpy as np
import os
from keras.layers import Dense, Reshape, Flatten, Dropout, LeakyReLU,
Activation, BatchNormalization, SpatialDropout2D
from keras.layers.convolutional import Convolution2D, UpSampling2D...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image