Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Engineering with Python

You're reading from   Data Engineering with Python Work with massive datasets to design data models and automate data pipelines using Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839214189
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Paul Crickard Paul Crickard
Author Profile Icon Paul Crickard
Paul Crickard
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Building Data Pipelines – Extract Transform, and Load
2. Chapter 1: What is Data Engineering? FREE CHAPTER 3. Chapter 2: Building Our Data Engineering Infrastructure 4. Chapter 3: Reading and Writing Files 5. Chapter 4: Working with Databases 6. Chapter 5: Cleaning, Transforming, and Enriching Data 7. Chapter 6: Building a 311 Data Pipeline 8. Section 2:Deploying Data Pipelines in Production
9. Chapter 7: Features of a Production Pipeline 10. Chapter 8: Version Control with the NiFi Registry 11. Chapter 9: Monitoring Data Pipelines 12. Chapter 10: Deploying Data Pipelines 13. Chapter 11: Building a Production Data Pipeline 14. Section 3:Beyond Batch – Building Real-Time Data Pipelines
15. Chapter 12: Building a Kafka Cluster 16. Chapter 13: Streaming Data with Apache Kafka 17. Chapter 14: Data Processing with Apache Spark 18. Chapter 15: Real-Time Edge Data with MiNiFi, Kafka, and Spark 19. Other Books You May Enjoy Appendix

What this book covers

Chapter 1, What Is Data Engineering, defines data engineering. It will introduce you to the skills, roles, and responsibilities of a data engineer. You will also learn how data engineering fits in with other disciplines, such as data science.

Chapter 2, Building Our Data Engineering Infrastructure, explains how to install and configure the tools used throughout this book. You will install two databases – ElasticSearch and PostgreSQL – as well as NiFi, Kibana, and, of course, Python.

Chapter 3, Reading and Writing Files, provides an introduction to reading and writing files in Python as well as data pipelines in NiFi. It will focus on Comma Seperated Values (CSV) and JavaScript Object Notation (JSON) files.

Chapter 4, Working with Databases, explains the basics of working with SQL and NoSQL databases. You will query both types of databases and view the results in Python and through the use of NiFi. You will also learn how to read a file and insert it into the databases.

Chapter 5, Cleaning and Transforming Data, explains how to take the files or database queries and perform basic exploratory data analysis. This analysis will allow you to view common data problems. You will then use Python and NiFi to clean and transform the data with a view to solving those common data problems.

Chapter 6, Project – Building a 311 Data Pipeline, sets out a project in which you will build a complete data pipeline. You will learn how to read from an API and use all of the skills acquired from previous chapters. You will clean and transform the data as well as enrich it with additional data. Lastly, you will insert the data into a warehouse and build a dashboard to visualize it.

Chapter 7, Features of a Production Data Pipeline, covers what is needed in a data pipeline to make it ready for production. You will learn about atomic transactions and how to make data pipelines idempotent.

Chapter 8, Version Control Using the NiFi Registry, explains how to version control your data pipelines. You will install and configure the NiFi registry. You will also learn how to configure the registry to use GitHub as the source of your NiFi processors.

Chapter 9, Monitoring and Logging Data Pipelines, teaches you the basics of monitoring and logging data pipelines. You will learn about the features of the NiFi GUI for monitoring. You will also learn how to use NiFi processors to log and monitor performance from within your data pipelines. Lastly, you will learn the basics of the NiFi API.

Chapter 10, Deploying Your Data Pipelines, proposes a method for building test and production environments for NiFi. You will learn how to move your completed and version-controlled data pipelines into a production environment.

Chapter 11, Project – Building a Production Data Pipeline, explains how to build a production data pipeline. You will use the project from Chapter 6 and add a number of features. You will version control the data pipeline as well as adding monitoring and logging features.

Chapter 12, Building an Apache Kafka Cluster, explains how to install and configure a three-node Apache Kafka cluster. You will learn the basics of Kafka – streams, topics, and consumers.

Chapter 13, Streaming Data with Kafka, explains how, using Python, you can write to Kafka topics and how to consume that data. You will write Python code for both consumers and producers using a third-party Python library.

Chapter 14, Data Processing with Apache Spark, walks you through the installation and configuration of a three-node Apache Spark cluster. You will learn how to use Python to manipulate data in Spark. This will be reminiscent of working with pandas DataFrames from Section 1 of this book.

Chapter 15, Project – Real-Time Edge Data – Kafka, Spark, and MiNiFi, introduces MiNiFi, which is a separate project to make NiFi available on low-resource devices such as Internet of Things devices. You will build a data pipeline that sends data from MiNiFi to your NiFi instance.

The Appendix teaches you the basics of clustering with Apache NiFi. You will learn how to distribute data pipelines and some caveats in doing so. You will also learn how to allow data pipelines to run on a single, specified node and not run distributed while in a cluster.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image