Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering Best Practices

You're reading from   Data Engineering Best Practices Architect robust and cost-effective data solutions in the cloud era

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781803244983
Length 550 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
David Larochelle David Larochelle
Author Profile Icon David Larochelle
David Larochelle
Richard J. Schiller Richard J. Schiller
Author Profile Icon Richard J. Schiller
Richard J. Schiller
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Chapter 1: Overview of the Business Problem Statement FREE CHAPTER 2. Chapter 2: A Data Engineer’s Journey – Background Challenges 3. Chapter 3: A Data Engineer’s Journey – IT’s Vision and Mission 4. Chapter 4: Architecture Principles 5. Chapter 5: Architecture Framework – Conceptual Architecture Best Practices 6. Chapter 6: Architecture Framework – Logical Architecture Best Practices 7. Chapter 7: Architecture Framework – Physical Architecture Best Practices 8. Chapter 8: Software Engineering Best Practice Considerations 9. Chapter 9: Key Considerations for Agile SDLC Best Practices 10. Chapter 10: Key Considerations for Quality Testing Best Practices 11. Chapter 11: Key Considerations for IT Operational Service Best Practices 12. Chapter 12: Key Considerations for Data Service Best Practices 13. Chapter 13: Key Considerations for Management Best Practices 14. Chapter 14: Key Considerations for Data Delivery Best Practices 15. Chapter 15: Other Considerations – Measures, Calculations, Restatements, and Data Science Best Practices 16. Chapter 16: Machine Learning Pipeline Best Practices and Processes 17. Chapter 17: Takeaway Summary – Putting It All Together 18. Chapter 18: Appendix and Use Cases 19. Index 20. Other Books You May Enjoy

Test framework example

Now that you have become aware of some of the approaches to testing, it’s time to look at a practical example and for that, we have to begin with key drivers. Please look at Figure 10.1, where you can see a test framework that you can take into account as you develop your solution. It should be formalized and made available to all those on the solution’s various project teams to utilize. In Figure 10.1 you can see that your test framework, integration, and best practices work together to form the scope of your test effort:

Figure 10.1 – Azure DevOps scope

Figure 10.1 – Azure DevOps scope

Remember that the goal is to reduce the overhead of testing and make it as easy as possible to run tests. The developers and testers need to be able to catch deviations from the status quo as development sprints release code into various developed environments. You will know that the system is minimally up and running based on integration tests that are running...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime