Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Cleaning and Exploration with Machine Learning

You're reading from   Data Cleaning and Exploration with Machine Learning Get to grips with machine learning techniques to achieve sparkling-clean data quickly

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781803241678
Length 542 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Section 1 – Data Cleaning and Machine Learning Algorithms
2. Chapter 1: Examining the Distribution of Features and Targets FREE CHAPTER 3. Chapter 2: Examining Bivariate and Multivariate Relationships between Features and Targets 4. Chapter 3: Identifying and Fixing Missing Values 5. Section 2 – Preprocessing, Feature Selection, and Sampling
6. Chapter 4: Encoding, Transforming, and Scaling Features 7. Chapter 5: Feature Selection 8. Chapter 6: Preparing for Model Evaluation 9. Section 3 – Modeling Continuous Targets with Supervised Learning
10. Chapter 7: Linear Regression Models 11. Chapter 8: Support Vector Regression 12. Chapter 9: K-Nearest Neighbors, Decision Tree, Random Forest, and Gradient Boosted Regression 13. Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
14. Chapter 10: Logistic Regression 15. Chapter 11: Decision Trees and Random Forest Classification 16. Chapter 12: K-Nearest Neighbors for Classification 17. Chapter 13: Support Vector Machine Classification 18. Chapter 14: Naïve Bayes Classification 19. Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning
20. Chapter 15: Principal Component Analysis 21. Chapter 16: K-Means and DBSCAN Clustering 22. Other Books You May Enjoy

Decision tree models

We will work with the heart disease data again in this chapter. This will be a great way to compare our results from the logistic regression model to those of a non-parametric model such as a decision tree. Follow these steps:

  1. First, we load the same libraries that we have been using so far. The new modules are DecisionTreeClassifier from scikit-learn and SMOTENC from Imbalance Learn, which will help us deal with imbalanced data:
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import OneHotEncoder
    from imblearn.pipeline import make_pipeline
    from sklearn.compose import ColumnTransformer
    from sklearn.model_selection import RandomizedSearchCV
    from imblearn.over_sampling import SMOTENC
    from sklearn.tree import DecisionTreeClassifier, plot_tree
    from scipy.stats import randint
    import sklearn.metrics as skmet
    import os
    import sys
    sys.path.append(os.getcwd() + "/helperfunctions")
    from...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime