Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Analysis with Python

You're reading from   Data Analysis with Python A Modern Approach

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789950069
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Taieb David Taieb
Author Profile Icon David Taieb
David Taieb
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Programming and Data Science – A New Toolset FREE CHAPTER 2. Python and Jupyter Notebooks to Power your Data Analysis 3. Accelerate your Data Analysis with Python Libraries 4. Publish your Data Analysis to the Web - the PixieApp Tool 5. Python and PixieDust Best Practices and Advanced Concepts 6. Analytics Study: AI and Image Recognition with TensorFlow 7. Analytics Study: NLP and Big Data with Twitter Sentiment Analysis 8. Analytics Study: Prediction - Financial Time Series Analysis and Forecasting 9. Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis 10. The Future of Data Analysis and Where to Develop your Skills A. PixieApp Quick-Reference Other Books You May Enjoy Index

What is data science

If you search the web for a definition of data science, you will certainly find many. This reflects the reality that data science means different things to different people. There is no real consensus on what data scientists exactly do and what training they must have; it all depends on the task they're trying to accomplish, for example, data collection and cleaning, data visualization, and so on.

For now, I'll try to use a universal and, hopefully, consensual definition: data science refers to the activity of analyzing a large amount of data in order to extract knowledge and insight leading to actionable decisions. It's still pretty vague though; one can ask what kind of knowledge, insight, and actionable decision are we talking about?

To orient the conversation, let's reduce the scope to three fields of data science:

  • Descriptive analytics: Data science is associated with information retrieval and data collection techniques with the goal of reconstituting past events to identify patterns and find insights that help understand what happened and what caused it to happen. An example of this is looking at sales figures and demographics by region to categorize customer preferences. This part requires being familiar with statistics and data visualization techniques.
  • Predictive analytics: Data science is a way to predict the likelihood that some events are currently happening or will happen in the future. In this scenario, the data scientist looks at past data to find explanatory variables and build statistical models that can be applied to other data points for which we're trying to predict the outcome, for example, predicting the likelihood that a credit card transaction is fraudulent in real-time. This part is usually associated with the field of machine learning.
  • Prescriptive analytics: In this scenario, data science is seen as a way to make better decisions, or perhaps I should say data-driven decisions. The idea is to look at multiple options and using simulation techniques, quantify, and maximize the outcome, for example, optimizing the supply chain by looking at minimizing operating costs.

In essence, descriptive data science answers the question of what (does the data tells me), predictive data science answers the question of why (is the data behaving a certain way), and prescriptive data science answers the questions of how (do we optimize the data toward a specific goal).

You have been reading a chapter from
Data Analysis with Python
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781789950069
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image