Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Scientist Associate Certification Guide

You're reading from   Azure Data Scientist Associate Certification Guide A hands-on guide to machine learning in Azure and passing the Microsoft Certified DP-100 exam

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781800565005
Length 448 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Andreas Botsikas Andreas Botsikas
Author Profile Icon Andreas Botsikas
Andreas Botsikas
Michael Hlobil Michael Hlobil
Author Profile Icon Michael Hlobil
Michael Hlobil
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Starting your cloud-based data science journey
2. Chapter 1: An Overview of Modern Data Science FREE CHAPTER 3. Chapter 2: Deploying Azure Machine Learning Workspace Resources 4. Chapter 3: Azure Machine Learning Studio Components 5. Chapter 4: Configuring the Workspace 6. Section 2: No code data science experimentation
7. Chapter 5: Letting the Machines Do the Model Training 8. Chapter 6: Visual Model Training and Publishing 9. Section 3: Advanced data science tooling and capabilities
10. Chapter 7: The AzureML Python SDK 11. Chapter 8: Experimenting with Python Code 12. Chapter 9: Optimizing the ML Model 13. Chapter 10: Understanding Model Results 14. Chapter 11: Working with Pipelines 15. Chapter 12: Operationalizing Models with Code 16. Other Books You May Enjoy

Chapter 7: The AzureML Python SDK

In this chapter, you will understand how the AzureML Python Software Development Kit (SDK) is structured and how to work with it, something that is key for the DP-100 exam. You will learn how to work with the Notebooks experience that is built into the AzureML Studio web portal, a tool that boosts coding productivity. Using the notebook editor, you will write some Python code to gain a better understanding of how to manage the compute targets, datastores, and datasets that are registered in the workspace. Finally, you are going to revisit the Azure CLI we looked at in Chapter 2, Deploying Azure Machine Learning Workspace Resources, to perform workspace management actions using the AzureML extension. This will allow you to script and automate your workspace management activities.

In this chapter, we are going to cover the following main topics:

  • Overview of the Python SDK
  • Working with AzureML notebooks
  • Basic coding with the AzureML...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime