Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Over 70 practical recipes for solving real-world computational math problems

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804618370
Length 376 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: An Introduction to Basic Packages, Functions, and Concepts 2. Chapter 2: Mathematical Plotting with Matplotlib FREE CHAPTER 3. Chapter 3: Calculus and Differential Equations 4. Chapter 4: Working with Randomness and Probability 5. Chapter 5: Working with Trees and Networks 6. Chapter 6: Working with Data and Statistics 7. Chapter 7: Using Regression and Forecasting 8. Chapter 8: Geometric Problems 9. Chapter 9: Finding Optimal Solutions 10. Chapter 10: Improving Your Productivity 11. Index 12. Other Books You May Enjoy

Using multilinear regression

Simple linear regression, as seen in the previous recipe, is excellent for producing simple models of a relationship between one response variable and one predictor variable. Unfortunately, it is far more common to have a single response variable that depends on many predictor variables. Moreover, we might not know which variables from a collection make good predictor variables. For this task, we need multilinear regression.

In this recipe, we will learn how to use multilinear regression to explore the relationship between a response variable and several predictor variables.

Getting ready

For this recipe, we will need the NumPy package imported as np, the Matplotlib pyplot module imported as plt, the Pandas package imported as pd, and an instance of the NumPy default random number generator created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

We will also need the statsmodels.api module imported...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime