Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark 2.x Machine Learning Cookbook

You're reading from   Apache Spark 2.x Machine Learning Cookbook Over 100 recipes to simplify machine learning model implementations with Spark

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781783551606
Length 666 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Broderick Hall Broderick Hall
Author Profile Icon Broderick Hall
Broderick Hall
Meenakshi Rajendran Meenakshi Rajendran
Author Profile Icon Meenakshi Rajendran
Meenakshi Rajendran
Shuen Mei Shuen Mei
Author Profile Icon Shuen Mei
Shuen Mei
Mohammed Guller Mohammed Guller
Author Profile Icon Mohammed Guller
Mohammed Guller
Siamak Amirghodsi Siamak Amirghodsi
Author Profile Icon Siamak Amirghodsi
Siamak Amirghodsi
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Practical Machine Learning with Spark Using Scala FREE CHAPTER 2. Just Enough Linear Algebra for Machine Learning with Spark 3. Spark's Three Data Musketeers for Machine Learning - Perfect Together 4. Common Recipes for Implementing a Robust Machine Learning System 5. Practical Machine Learning with Regression and Classification in Spark 2.0 - Part I 6. Practical Machine Learning with Regression and Classification in Spark 2.0 - Part II 7. Recommendation Engine that Scales with Spark 8. Unsupervised Clustering with Apache Spark 2.0 9. Optimization - Going Down the Hill with Gradient Descent 10. Building Machine Learning Systems with Decision Tree and Ensemble Models 11. Curse of High-Dimensionality in Big Data 12. Implementing Text Analytics with Spark 2.0 ML Library 13. Spark Streaming and Machine Learning Library

Exploring the movies data details for the recommendation system in Spark 2.0


In this recipe, we will begin to explore the data file by parsing data into a Scala case class and generating a simple metric. The key here is to acquire an understanding of our data, so in the later stages, if nebulous results arise, we will have some insight to make an informed conclusion about the correctness of our results.

This is the first of the two recipes which explore the movie dataset. Data exploration is an important first step in statistical analysis and machine learning.

One of the best ways to understand the data quickly is to generate a data visualization of it, and we will use JFreeChart to do that. It is very important to make sure you feel comfortable with the data and understand firsthand what is in each file, and the story it tries to tell.

We must always explore, understand, and visualize the data before we do anything else. Most performances and misses with ML and others systems can be traced...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime