Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Agile Machine Learning with DataRobot

You're reading from   Agile Machine Learning with DataRobot Automate each step of the machine learning life cycle, from understanding problems to delivering value

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781801076807
Length 344 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Bipin Chadha Bipin Chadha
Author Profile Icon Bipin Chadha
Bipin Chadha
Sylvester Juwe Sylvester Juwe
Author Profile Icon Sylvester Juwe
Sylvester Juwe
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Foundations
2. Chapter 1: What Is DataRobot and Why You Need It? FREE CHAPTER 3. Chapter 2: Machine Learning Basics 4. Chapter 3: Understanding and Defining Business Problems 5. Section 2: Full ML Life Cycle with DataRobot: Concept to Value
6. Chapter 4: Preparing Data for DataRobot 7. Chapter 5: Exploratory Data Analysis with DataRobot 8. Chapter 6: Model Building with DataRobot 9. Chapter 7: Model Understanding and Explainability 10. Chapter 8: Model Scoring and Deployment 11. Section 3: Advanced Topics
12. Chapter 9: Forecasting and Time Series Modeling 13. Chapter 10: Recommender Systems 14. Chapter 11: Working with Geospatial Data, NLP, and Image Processing 15. Chapter 12: DataRobot Python API 16. Chapter 13: Model Governance and MLOps 17. Chapter 14: Conclusion 18. Other Books You May Enjoy

Chapter 13: Model Governance and MLOps

In the previous chapters, we learned how to build, understand, and deploy models. We will now learn how to govern these models and how to responsibly use these models in operations. In earlier chapters, we discussed the methods for understanding the business problem, the system in which the model will operate, and the potential consequences of using a model's predictions. MLOps is a word made up of machine learning and DevOps. It is made of processes and practices to efficiently, reliably, and effectively operationalize the production of machine learning (ML) models within an enterprise. MLOps aims to ensure commercial value and regulatory requirements are met continuously by ensuring production models' outcomes are of good quality and automation is in place. It provides a centralized system to manage the entire life cycle of all ML models in production.

Activities within MLOps cover all aspects of model deployment, provide real-time...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image