Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with R

You're reading from   Advanced Deep Learning with R Become an expert at designing, building, and improving advanced neural network models using R

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789538779
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Bharatendra Rai Bharatendra Rai
Author Profile Icon Bharatendra Rai
Bharatendra Rai
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Revisiting Deep Learning Basics FREE CHAPTER
2. Revisiting Deep Learning Architecture and Techniques 3. Section 2: Deep Learning for Prediction and Classification
4. Deep Neural Networks for Multi-Class Classification 5. Deep Neural Networks for Regression 6. Section 3: Deep Learning for Computer Vision
7. Image Classification and Recognition 8. Image Classification Using Convolutional Neural Networks 9. Applying Autoencoder Neural Networks Using Keras 10. Image Classification for Small Data Using Transfer Learning 11. Creating New Images Using Generative Adversarial Networks 12. Section 4: Deep Learning for Natural Language Processing
13. Deep Networks for Text Classification 14. Text Classification Using Recurrent Neural Networks 15. Text classification Using Long Short-Term Memory Network 16. Text Classification Using Convolutional Recurrent Neural Networks 17. Section 5: The Road Ahead
18. Tips, Tricks, and the Road Ahead 19. Other Books You May Enjoy

Preparing text data for model building

We will continue to use IMDB movie review data that we used in the previous chapter on recurrent neural networks. This data is already available in a format where we can use it for developing deep network models with minimum need for data processing.

Let's take a look at the following code:

# IMDB data
library(keras)
imdb <- dataset_imdb(num_words = 500)
c(c(train_x, train_y), c(test_x, test_y)) %<-% imdb
train_x <- pad_sequences(train_x, maxlen = 200)
test_x <- pad_sequences(test_x, maxlen = 200)

The sequence of integers capturing train and test data is stored in train_x and test_x respectively. Similarly, train_y and test_y store labels capturing information about whether movie reviews are positive or negative. We have specified the number of most frequent words to be 500. For padding, we are using 200 as the maximum length...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image