Professors state that there’s a common preconceived notion that advancements in tech lead to an increase in productivity, which in turn, leads to an increase in demand for labor, thereby, impacting employment and wages. However, this is not entirely true as automation tech does not boost labor’s productivity. Instead, this tech replaces labor’s productivity by finding a cheaper capital substitute in terms of tasks performed by humans. In a nutshell, automation tech always reduces the ‘labor’s share in value added’.
“In an age of rapid automation, labor’s relative standing will deteriorate and workers will be particularly badly affected if new technologies are not raising productivity sufficiently”, states professors. But, the paper also poses a question that if automation tends to reduce the labor share then why did the labor share remain constant over the last two centuries? Also, why does productivity growth go hand-in-hand with commensurate wage growth?
Professors state that in order to understand this relationship and find an answer, people need to recognize different types of technological advances that contribute to productivity growth. They state that Labor demand has not increased over the last two centuries due to technologies that have made labor more productive rather due to new technologies that have eliminated labor from tasks in which it previously specialized.
Professors state that economists put a great deal of trust in the Market’s ability to distribute the resources efficiently. However, there are many who disagree. “Is there any reason to worry that AI applications with the promise of reinstating human labor will not be exploited and resources will continue to pour instead into the wrong kind of AI?” state the professors.
Professors listed several reasons for market failures in innovation with some specific reasons that are important in terms of AI. Few of these reasons are as follows:
To sum it up, professors state that although there is no ‘definitive evidence’ that research and corporate resources are getting directed towards the wrong kind of AI, the market for innovation does not provide a good enough reason to expect an efficient balance between different types of AI. Instead of contributing to productivity growth, employment, and shared prosperity, automation advancement would instead lead to anemic growth and inequality.
“Though many today worry about the security risks and other..consequences of AI, we have argued that there are prima facie reasons for worrying about the wrong kind of AI from an economic point of view becoming all the rage and the basis of future technological development”, reads the paper.
Stanford University launches Institute of Human Centered Artificial Intelligence; receives public backlash for non-representative faculty makeup
Researchers at Columbia University use deep learning to translate brain activity into words for epileptic cases
Researchers discover Spectre like new speculative flaw, “SPOILER” in Intel CPU’s