Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unreal Engine Physics Essentials

You're reading from   Unreal Engine Physics Essentials Gain practical knowledge of mathematical and physics concepts in order to design and develop an awesome game world using Unreal Engine 4

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781784394905
Length 216 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Devin Sherry Devin Sherry
Author Profile Icon Devin Sherry
Devin Sherry
Katax Emperore Katax Emperore
Author Profile Icon Katax Emperore
Katax Emperore
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Math and Physics Primer FREE CHAPTER 2. Physics Asset Tool 3. Collision 4. Constraints 5. Physics Damping, Friction, and Physics Bodies 6. Materials 7. Creating a Vehicle Blueprint 8. Advanced Topics Index

How to use scientific notation?

The main logic behind using scientific notation is to take a very large or small number and convert it to an easy to read/write expression. For an example that isn't a power of 10, the number 0.5 converted to scientific notation would read as 5 * 10^-1. We reached this expression by moving the decimal point in 0.5 once to the right-hand side making the number into 5. The goal of using scientific notation is to reach the base number, meaning a number between 1 and 9. As we had to move the decimal point to the right-hand side, we know that the expression would read as a negative exponent, whereas if we were to move the decimal point to the left-hand side, the exponent would be positive. The number 5 is our base, and we multiply it by 10 with an exponent that is equal to the number of times we moved the decimal point to reach the said base. In our case, it would be 1. Lastly, we know that the exponent would be negative because we are dealing with 0.5, a number less than 1, and we had to move the decimal point to the right-hand side. As a result, our scientific notation of 0.5 would be 5 * 10^-1. Here are a few more examples of large and small numbers as expressed in the scientific notation:

  • 642,300,544,000 – 6.42300544 * 10^11
  • .00002055 – 2.055 * 10^-5
  • 8,549,248.5004 – 8.549285004 * 10^6
  • .0125174 – 1.25174 * 10^-2
You have been reading a chapter from
Unreal Engine Physics Essentials
Published in: Sep 2015
Publisher:
ISBN-13: 9781784394905
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image