Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Create machine learning platforms to run solutions in an enterprise setting

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801072168
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Solving Business Challenges with Machine Learning Solution Architecture
2. Chapter 1: Machine Learning and Machine Learning Solutions Architecture FREE CHAPTER 3. Chapter 2: Business Use Cases for Machine Learning 4. Section 2: The Science, Tools, and Infrastructure Platform for Machine Learning
5. Chapter 3: Machine Learning Algorithms 6. Chapter 4: Data Management for Machine Learning 7. Chapter 5: Open Source Machine Learning Libraries 8. Chapter 6: Kubernetes Container Orchestration Infrastructure Management 9. Section 3: Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms
10. Chapter 7: Open Source Machine Learning Platforms 11. Chapter 8: Building a Data Science Environment Using AWS ML Services 12. Chapter 9: Building an Enterprise ML Architecture with AWS ML Services 13. Chapter 10: Advanced ML Engineering 14. Chapter 11: ML Governance, Bias, Explainability, and Privacy 15. Chapter 12: Building ML Solutions with AWS AI Services 16. Other Books You May Enjoy

ML versus traditional software

Before I started working in the field of AI/ML, I spent many years building computer software platforms for large financial services institutions. Some of the business problems I worked on had complex rules, such as identifying companies for comparable analysis for investment banking deals, or creating a master database for all the different companies' identifiers from the different data providers. We had to implement hardcoded rules in database stored procedures and application server backends to solve these problems. We often debated if certain rules made sense or not for the business problems we tried to solve. As rules changed, we had to reimplement the rules and make sure the changes did not break anything. To test for new releases or changes, we often replied to human experts to exhaustively test and validate all the business logic implemented before the production release. It was a very time-consuming and error-prone process and required a significant amount of engineering, testing against the documented specification, and rigorous change management for deployment every time new rules were introduced, or existing rules needed to be changed. We often relied to users to report business logic issues in production, and when an issue was reported in production, we sometimes had to open up the source code to troubleshoot or explain the logic of how it worked. I remember I often asked myself if there were better ways to do this.

After I started working in the field of AI/ML, I started to solve many similar challenges using ML techniques. With ML, I did not need to come up with complex rules that often require deep data and domain expertise to create or maintain the complex rules for decision making. Instead, I focused on collecting high-quality data and used ML algorithms to learn the rules and patterns from the data directly. This new approach eliminated many of the challenging aspects of creating new rules (for example, a deep domain expertise requirement, or avoiding human bias) and maintaining existing rules. To validate the model before the production release, we could examine model performance metrics such as accuracy. While it still required data science expertise to interpret the model metrics against the nature of the business problems and dataset, it did not require exhaustive manual testing of all the different scenarios. When a model was deployed into production, we would monitor if the model performed as expected by monitoring any significant changes in production data versus the data we have collected for model training. We would collect new labels for production data and test the model performance periodically to ensure its predictive power had not degraded. To explain why a model made a decision the way it did, we did not need to open up source code to re-examine the hardcoded logic. Instead, we would rely on ML techniques to help explain the relative importance of different input features to understand what factors were most influential in the decision-making by the ML models.

The following figure (Figure 1.5) shows a graphical view of the process differences between developing a piece of software and training an ML model:

Figure 1.5 – ML and computer software

Figure 1.5 – ML and computer software

Now that you know the difference between ML and traditional software, it is time to dive deep into understanding the different stages in an ML life cycle.

You have been reading a chapter from
The Machine Learning Solutions Architect Handbook
Published in: Jan 2022
Publisher: Packt
ISBN-13: 9781801072168
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image