Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The DevOps 2.5 Toolkit

You're reading from   The DevOps 2.5 Toolkit Monitoring, Logging, and Auto-Scaling Kubernetes: Making Resilient, Self-Adaptive, And Autonomous Kubernetes Clusters

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838647513
Length 322 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Viktor Farcic Viktor Farcic
Author Profile Icon Viktor Farcic
Viktor Farcic
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

1. Autoscaling Deployments and StatefulSets Based on Resource Usage FREE CHAPTER 2. Auto-scaling Nodes of a Kubernetes Cluster 3. Collecting and Querying Metrics and Sending Alerts 4. Debugging Issues Discovered Through Metrics and Alerts 5. Extending HorizontalPodAutoscaler with Custom Metrics 6. Visualizing Metrics and Alerts 7. Collecting and Querying Logs 8. What Did We Do? 9. Other Books You May Enjoy

Scaling down the cluster

Scaling up the cluster to meet the demand is essential since it allows us to host all the replicas we need to fulfill (some of) our SLAs. When the demand drops and our nodes become underutilized, we should scale down. That is not essential given that our users will not experience problems caused by having too much hardware in our cluster. Nevertheless, we shouldn't have underutilized nodes if we are to reduce expenses. Unused nodes result in wasted money. That is true in all situations, especially when running in Cloud and paying only for the resources we used. Even on-prem, where we already purchased hardware, it is essential to scale down and release resources so that they can be used by other clusters.

We'll simulate a decrease in demand by applying a new definition that will redefine the HPAs threshold to 2 (min) and 5 (max).

 1  kubectl...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image