Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Data Wrangling Workshop

You're reading from   The Data Wrangling Workshop Create your own actionable insights using data from multiple raw sources

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839215001
Length 576 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Dr. Tirthajyoti Sarkar Dr. Tirthajyoti Sarkar
Author Profile Icon Dr. Tirthajyoti Sarkar
Dr. Tirthajyoti Sarkar
Shubhadeep Roychowdhury Shubhadeep Roychowdhury
Author Profile Icon Shubhadeep Roychowdhury
Shubhadeep Roychowdhury
Brian Lipp Brian Lipp
Author Profile Icon Brian Lipp
Brian Lipp
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Data Wrangling with Python 2. Advanced Operations on Built-In Data Structures FREE CHAPTER 3. Introduction to NumPy, Pandas, and Matplotlib 4. A Deep Dive into Data Wrangling with Python 5. Getting Comfortable with Different Kinds of Data Sources 6. Learning the Hidden Secrets of Data Wrangling 7. Advanced Web Scraping and Data Gathering 8. RDBMS and SQL 9. Applications in Business Use Cases and Conclusion of the Course Appendix

Fundamentals of Regular Expressions (RegEx)

Regular expressions or regex are used to identify whether a pattern exists in a given sequence of characters (a string) or not. They help with manipulating textual data, which is often a prerequisite for data science projects that involve text mining.

RegEx in the Context of Web Scraping

Web pages are often full of text, and while there are some methods in BeautifulSoup or XML parsers to extract raw text, there is no method for the intelligent analysis of that text. If, as a data wrangler, you are looking for a particular piece of data (for example, email IDs or phone numbers in a special format), you have to do a lot of string manipulation on a large corpus to extract email IDs or phone numbers. RegEx is very powerful and can save a data wrangling professional a lot of time and effort with string manipulation because they can search for complex textual patterns with wildcards of an arbitrary length.

RegEx is like a mini-programming...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image