Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Stream Analytics with Microsoft Azure

You're reading from   Stream Analytics with Microsoft Azure Real-time data processing for quick insights using Azure Stream Analytics

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781788395908
Length 322 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Krishnaswamy Venkataraman Krishnaswamy Venkataraman
Author Profile Icon Krishnaswamy Venkataraman
Krishnaswamy Venkataraman
Ryan Murphy Ryan Murphy
Author Profile Icon Ryan Murphy
Ryan Murphy
Manpreet Singh Manpreet Singh
Author Profile Icon Manpreet Singh
Manpreet Singh
Anindita Basak Anindita Basak
Author Profile Icon Anindita Basak
Anindita Basak
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introducing Stream Processing and Real-Time Insights FREE CHAPTER 2. Introducing Azure Stream Analytics and Key Advantages 3. Designing Real-Time Streaming Pipelines 4. Developing Real-Time Event Processing with Azure Streaming 5. Building Using Stream Analytics Query Language 6. How to achieve Seamless Scalability with Automation 7. Integration of Microsoft Business Intelligence and Big Data 8. Designing and Managing Stream Analytics Jobs 9. Optimizing Intelligence in Azure Streaming 10. Understanding Stream Analytics Job Monitoring 11. Use Cases for Real-World Data Streaming Architectures

Windowing


Continuously streaming data makes real-time computations and insights possible, overcoming the latency inherent in batch data processing systems. However, insights requiring aggregations of data, even very recent trending (for example, in the past 10 seconds), need to break the data stream into bounded groups of events. Time is a fundamental concept of streaming data systems and the natural construct to use when defining event boundaries for computing aggregations.

The following screenshot shows an event stream with defined time windows overlayed and sample computations produced. Note that the time windowing is fundamental to computing aggregates, like a count of events:

Stream Analytics uses windows of time to group events and supports window types that enable a variety of common event grouping patterns. In this section, we will examine the tumbling window, hopping window, and sliding window types. Stream Analytics windows are always used in the GROUP BY query clause. Queries will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image