Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Spark Cookbook

You're reading from   Spark Cookbook With over 60 recipes on Spark, covering Spark Core, Spark SQL, Spark Streaming, MLlib, and GraphX libraries this is the perfect Spark book to always have by your side

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher
ISBN-13 9781783987061
Length 226 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Rishi Yadav Rishi Yadav
Author Profile Icon Rishi Yadav
Rishi Yadav
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Apache Spark 2. Developing Applications with Spark FREE CHAPTER 3. External Data Sources 4. Spark SQL 5. Spark Streaming 6. Getting Started with Machine Learning Using MLlib 7. Supervised Learning with MLlib – Regression 8. Supervised Learning with MLlib – Classification 9. Unsupervised Learning with MLlib 10. Recommender Systems 11. Graph Processing Using GraphX 12. Optimizations and Performance Tuning Index

Doing classification using Random Forests


Sometimes one decision tree is not enough, so a set of decision trees is used to produce more powerful models. These are called ensemble learning algorithms. Ensemble learning algorithms are not limited to using decision trees as base models.

The most popular among the ensemble learning algorithms is Random Forest. In Random Forest, rather than growing one single tree, K trees are grown. Every tree is given a random subset S of training data. To add a twist to it, every tree only uses a subset of features. When it comes to making predictions, a majority vote is done on the trees and that becomes the prediction.

Let's explain this with an example. The goal is to make a prediction for a given person about whether he/she has good credit or bad credit.

To do this, we will provide labeled training data—that is, in this case, a person with features and labels whether he/she has good credit or bad credit. Now we do not want to create feature bias so we will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime