Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala and Spark for Big Data Analytics

You're reading from   Scala and Spark for Big Data Analytics Explore the concepts of functional programming, data streaming, and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785280849
Length 796 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Sridhar Alla Sridhar Alla
Author Profile Icon Sridhar Alla
Sridhar Alla
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Introduction to Scala 2. Object-Oriented Scala FREE CHAPTER 3. Functional Programming Concepts 4. Collection APIs 5. Tackle Big Data – Spark Comes to the Party 6. Start Working with Spark – REPL and RDDs 7. Special RDD Operations 8. Introduce a Little Structure - Spark SQL 9. Stream Me Up, Scotty - Spark Streaming 10. Everything is Connected - GraphX 11. Learning Machine Learning - Spark MLlib and Spark ML 12. My Name is Bayes, Naive Bayes 13. Time to Put Some Order - Cluster Your Data with Spark MLlib 14. Text Analytics Using Spark ML 15. Spark Tuning 16. Time to Go to ClusterLand - Deploying Spark on a Cluster 17. Testing and Debugging Spark 18. PySpark and SparkR

Pattern matching

One of the widely used features of Scala is pattern matching. Each pattern match has a set of alternatives, each of them starting with the case keyword. Each alternative has a pattern and expression(s), which will be evaluated if the pattern matches and the arrow symbol => separates pattern(s) from expression(s). The following is an example which demonstrates how to match against an integer:

object PatternMatchingDemo1 {
def main(args: Array[String]) {
println(matchInteger(3))
}
def matchInteger(x: Int): String = x match {
case 1 => "one"
case 2 => "two"
case _ => "greater than two"
}
}

You can run the preceding program by saving this file in PatternMatchingDemo1.scala and then using the following commands to run it. Just use the following command:

>scalac Test.scala
>scala Test

You will get the...

You have been reading a chapter from
Scala and Spark for Big Data Analytics
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781785280849
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime